
iOS development in
Objective-C

Assignment 1

Assignment Format

• 3 weeks of classes, 3 assignments

• 60 to 90 minute lecture, with some hands-on time

• Remainder of class is hands-on time

• Remainder of assignment is due during the
following class

• Assignments will build upon each other, so not
completing one will make future assignments
harder

Alternatives to Objective-C & Cocoa

• OpenFrameworks (C++)

• Flash Builder (ActionScript)

• PhoneGap (JavaScript)

• Appcelerator Titanium (JavaScript)

• RubyMotion (Ruby)

• MonoTouch (C#)

• And more...

Alternatives to Objective-C & Cocoa

• Although less familiar and potentially more
difficult, we’re going to show you Objective-C
because it’s how professional developers make
apps.

• For your personal projects and prototypes, other
frameworks and languages may make more sense

If you already know some Objective-C...

• Come talk to me during the hands-on period
today

• You’ll be able to propose a simple project for me
to grade, and be able to get help with your project

One more thing...

• This stuff is hard

• Pay close attention... missing a concept will hurt

• Help each other out!

• Your work must be your own

The iOS Development Process

iPhone
SimulatorXcode

An IDE (Integrated Development
Environment)

Text Editor
Interface
Builder

Compiler Debugger

Instruments

For checking progress
without a device

For determining problems
with memory or

performance

Getting started with Xcode

• Create a basic view to display information about a
restaurant.

Assign
ment

Goal

Understanding Xcode

• We’ll start by creating a New Project from a
Master-Detail template

Understanding Xcode

• Fill in the following options

Understanding Xcode

• Save it

Building

• Build and Run, and watch your app appear in the
simulator

Files in Xcode

What are all these crazy files?
In the Project Navigator in Xcode you’ll usually see various kinds of files that comprise various
pieces of your application. Here are the most common ones.

• .m (Objective-C source code) These are the code files that are compiled by the
compiler to make your program function. They will contain the logic that you will write.

• .h (header file) These are usually paired with a .m file. They represent the public interface
for that .m file: i.e., they explain to other files how to communicate with it.

• .storyboard (Storyboard interface file) These files represent a series of views in your
application, it’s interface layout, and the transitions between interfaces. They are intended
to draw parallels between storyboarding and wireframes.

• .plist (Property list file) These are useful files in that they represent arbitrary data: lists,
dictionaries, strings, booleans, etc. They are usually used to either store data for an app or
store configuration options for building that app.

• .xcodeproj You won’t see this in the sidebar because you are already looking inside it
using Xcode. These files are for specifying your project structure and settings.

Reference

Additional Files

The following files we won’t be editing in any of our assignments, although Xcode
may perform tasks on them as we use it.

• .strings (Strings file) These won’t be covered in this class, but they provide a
place to put whatever user interface language is necessary in one place. When
translating applications into other languages, strings files are used to completely
replace the language while keeping the rest of the application the same.

• .pch (Precompiled header file) This file is referenced by the compiler. Anything
included in this file will be available in any code file in your code without
explicitly calling it. We won’t need to modify this file in this course.

• .framework (Framework) Frameworks are bundles: special folders that act as
files. They contain code that is related and that you might want to use. For
example, to determine a user’s location, the CoreLocation framework is used.
Typically, framework files are managed through Xcode: you don’t need to deal
with them yourself.

• .app (Application Bundle) This is your app! Like a framework, it’s a bundle,
which means it contains a number of other files within it.

Reference

Xcode Interface

http://developer.apple.com/library/ios/#recipes/xcode_help-general/_index.html#//apple_ref/doc/uid/
TP40010548

Reference

http://developer.apple.com/library/ios/#recipes/xcode_help-general/_index.html%23//apple_ref/doc/uid/TP40010548
http://developer.apple.com/library/ios/#recipes/xcode_help-general/_index.html%23//apple_ref/doc/uid/TP40010548
http://developer.apple.com/library/ios/#recipes/xcode_help-general/_index.html%23//apple_ref/doc/uid/TP40010548
http://developer.apple.com/library/ios/#recipes/xcode_help-general/_index.html%23//apple_ref/doc/uid/TP40010548

Starting with the User Interface

• We’ll start by designing Storyboards

• Created by Interface Builder

• Built into Xcode

• Allows us to visually lay out some of the screens
we are going to design.

Storyboards

• Visually lay out views

• Visually connect views to other views

Laying out the Detail View

• Visually lay out views

• Visually connect views to other views

Goal

A couple of things to keep in mind...

• No code yet, just layout with static text and images

• It’s not Photoshop

• Get familiar with Interface Builder and interface
elements.

Goal

Labels and Images

Tips:

• You can add interface elements using the panel on
the bottom right

• Add images to Xcode by dragging them into the
project navigator on the left

• Ensure you copy images to the project folder, like
this:

• You can change properties using the panel on the
right

Interface Builder Elements
Reference

Interface Builder Elements, cont.
Reference

Objective-C
Part 1: What it is, Types and Operators, Logging, and

Debugging

What is Objective-C?

• A superset of C, a 40+ year-old powerful
programming language

• Any C code is also valid Objective-C code

• Adds classes and objects (along with much more)

• The primary language for iOS and Mac OS
development

• Used by Next for the NextStep operating system,
which was then purchased by Apple and became
OS X

Why did Apple choose it?

• It’s fast

• It’s powerful

• It’s (fairly) easy to read

What does it look like?

Objective-C JavaScript

Variable assignment

Creating a string

Calling a property on
a class

Calling a method on a
class

int x = 5 + 3; var x = 5 + 3;

NSString *name = @”Dimitri”; var name = “Dimitri”;

person.name; person.name;

[joe addChild:mary]; joe.addChild(mary);

Types

• Objective-C, like C, requires Static Types for basic
types

• This means that you will need to tell the
compiler what a variable holds

• Declare a variable: int x;

• Use that variable: x = 12;

• We are letting the compiler know that we are
going to store an integer number in the variable
x.

More types

• The most common ones we will use will be int,
float, and BOOL

• You can declare a variable and assign it in one line:

• int x = 4;

• If you try to store a variable in a type it doesn’t
expect, strange things happen:

• int x = 0.9; // x will be 0

• int x = YES; // x will be 1

• int x = @”yellow”; // your app will crash (but it
will warn you first)

Operators

• Operators come from C, here are some
common ones:

Operator Reference
Reference

A tricky problem

int x = 1;
x = x + 1;
float y = 2.0;
float result = x / y;

What is the value of result?

a) .5 (1/2)
b) 0
c) 1

Sample

- (void)configureView
{
 // Update the user interface for the detail item.

 if (self.detailItem) {
 self.detailDescriptionLabel.text = [self.detailItem description];
 }
}

Sample

First lines of Objective-C

• Create a UILabel with the price of a meal displayed

• The price of a meal will be a calculation we write
in code.

Goal

1. Create the UILabel in the Storyboard

2. Click on the DetailViewController below the view

3. Drag a connection from
detailDescriptionLabel to your new UILabel

4. Build & Run. Your label should show with the date in
it.

Setup

Let’s get coding!

• Open DetailViewController.m

• Modify the configureView method

• Create a local variable to hold the price of dinner
(for now lets just set it to 42.09)

• Change the line where the date is being set:

• self.detailDescriptionLabel.text = [self.detailItem description];

• to

• self.detailDescriptionLabel.text = [NSString stringWithFormat:@"$
%.2f",dinnerPrice];

• Don’t worry about the details of this line yet, we’ll
get to that later!

Testing your code

• Build and Run

• Your build should be error and warning free.

• You should see the value $42.09 on your UILabel

Warnings Errors

Calculating the price of dinner

• Calculate the price of dinner for 4 people.Goal

Rules:

• Entrees cost $21.50, and each person buys one

• Appetizers cost $8.00, and 2 people split one

• Wine costs $43.00, and 4 people split a bottle

• Dessert costs $4.75, and each person buys one

• The restaurant does not sell half bottles of wine

• Express all prices and counts as variables

Methods

• Methods are similar to functions, but are
performed on a class

• They are used to enhance readability and reduce
repetition in code.

• They encapsulate functionality into one place.

Methods

• What if we wanted to change the number of
people coming to dinner?

• What if we wanted to expose a control that the
user could change that number?

• We use methods with parameters to be able to
accomplish these goals

Writing a method

• The number of guests is an int, because you can’t
have 3.4 guests.

• The return price is a float, since your dinner can
cost $97.50.

Calling a Method

• self is a special keyword which simply means
“this object”, in this case the DetailViewController
object.

Calculating the price of dinner

• Create a method to calculate dinner for an
arbitrary number of people, and call it with 2, 4, 5
and 6, checking your answer each time.

Goal

• Add 20% tip and 8.875% tax to the price of dinnerGoal

when you are done...

Logging

• It’s often useful to be able to see the result of
some calculation without putting it on the screen

• To do this, we call the function (it’s not a method)
NSLog

 NSLog(@"Some bit of text");
 NSLog(@"Some integer: %i",anInteger);
 NSLog(@"Some float: %f",aFloat);

Debugging and Breakpoints

• It’s also useful to be able to stop your app at a
specific point to see what’s wrong.

• You need a Breakpoint.

• To make, just click in the gutter next to your code

• Beware you don’t set them accidentally!

• Your app will appear to be frozen

• You should check Xcode if this happens

• In the bottom pane you can inspect the current
value of all of your variables

Breakpoints

Debugging

General Tips

• Take it slow!

• Don’t move on until you correctly complete
where you are

• Build as frequently as you can

• Never let errors or warnings linger: fix them!

Language Tips

• All statements must end with a semi-colon

• All parentheses and curly braces must match

• Don’t forget the @ sign before a string: @”test”

• Make sure you understand what types you are
using and why

Assignment

• Ensure you have an error-free and warning free
app

• Your detail screen should show both static text
and images similar to the example, but feel free to
get creative

• Your detail screen should show the correct price
of dinner for 4 people, or for 5 or 6 if you choose,
including tip & tax

• You should be able to debug a running application
to help narrow down where a problem is
occurring

Additional Assignment

• Compile a list of questions that you have for next
class.

• We’ll review some of these questions at the
beginning of class and discuss them as a group

Turn In

• Zip your Assignment1 folder and email to:

stanciod@newschool.edu

DUE: Before class on Monday

Bring your questions to class next week!

mailto:stanciod@newschool.edu
mailto:stanciod@newschool.edu

Optional Work

• Try adding more labels to the view, and populating
them from the result of other methods.

• Try writing a method that takes 2 parameters.

• Hint: [self insertItem:item atIndex:index]

These aren’t required, and will take some research to be able to answer

Next Class

Objects and
Classes

