
Objects, Methods,
Classes, and Properties

A primer to Object Oriented programming in
Objective-C

Monday, April 8, 13

Why object oriented?

• Nearly all modern software is object oriented

• Helps organize code

• It’s fun!

Monday, April 8, 13

What is an object?

• Objects are the nouns of OOP

• “I want to set the image of that view to this
image

Monday, April 8, 13

Visual Element or Concept

• Set the color of that view to red

• Set the name of that person to Brutus

• The address of that restaurant is 240 E
13th St.

• The color of this bottle is green

Monday, April 8, 13

Objects allow us to do 2 things

• Hold other objects

• This person’s first name is Winston

• Do stuff

• This view should scroll to the 200 pixel mark

Monday, April 8, 13

Methods

• Methods are the verbs of OOP

• “Set the scroll location to 120”

• “Push this view onto the stack”

• “Animate this to center screen”

Monday, April 8, 13

Properties

• Properties are data about an object

• They are like a local variable, except they can be
used anywhere by that object

Monday, April 8, 13

An object you might create

Property Name Type Value

name NSString* @”Chat ‘n
Chew”

cuisine NSString* @“American”

image UIImage*

Chat ‘n Chew Restaurant

Monday, April 8, 13

Restaurant Methods

• The verbs of “What do we need to do with a
restaurant”

• - (float) calculatePriceOfDinner

• - (void) addReview:(Review*)review

• - (void) deleteReview:(Review*)review

Monday, April 8, 13

void and nil

• Both mean “nothing”

• void is used in place of a Type, when a method
returns nothing

• nil is used in place of an Object, so that a variable
can point at nothing

Monday, April 8, 13

Another example object

Property Name Type Value

text NSString* @”One Fine
Evening”

textColor UIColor*

fontSize float 18

A Label

Monday, April 8, 13

Example Code - Restaurant

 Restaurant* chatNChew = [Restaurant new];

 titleLabel.text = chatNChew.name;

 subtitleLabel.text = chatNChew.cuisine;

 float priceOfDinner = [chatNChew calculatePriceOfDinner];

 priceLabel.text = [NSString stringWithFormat:@"$.2f"];

Create a new restaurant
and set it to the

chatNChew variable

Ask for the name property
of chatNChew, set the title

label on the view

Ask for the cuisine property
of chatNChew, set the

subtitle label on the view

Call the
calculatePriceOfDinner
method on chatNChew

Set the price on the
priceLabel

Monday, April 8, 13

Almost everything is an object!

• Almost?

• int, float, BOOL, double, etc. are all basic data
types

• C Structures are also supported, but used less
frequently

• Data types and C-Structs only hold data: they
can’t have methods.

Monday, April 8, 13

Challenge: Turn this into an object the
computer understands

Monday, April 8, 13

Tips

• Use properties to describe the object

• What physical properties does it possess?

• Pretend you are describing it to someone who
has never seen one.

• Use methods to describe what the object can do

• What other objects might need to interact with
this object?

Monday, April 8, 13

Classes

• Q: How do we write an object in code?

• A: You don’t! You create it when the application
runs!

Monday, April 8, 13

Example

• We write a Class to define the properties and
methods that objects of that kind of class will
have.

• Classes are the blueprints of objects

Monday, April 8, 13

How we might create 3 bricks

Brick* yellowBrick = [Brick new];
yellowBrick.color = [UIColor yellowColor];
yellowBrick.width = 2;
yellowBrick.height = 2;
[yellowBrick placeOnBrick:ground];

Brick* redBrick = [Brick new];
redBrick.color = [UIColor redColor];
redBrick.width = 2;
redBrick.height = 3;
[redBrick placeOnBrick:yellowBrick];

Brick* blueBrick = [Brick new];
blueBrick.color = [UIColor blueColor];
blueBrick.width = 2;
blueBrick.height = 4;
[blueBrick placeOnBrick:redBrick];

Notice how we both
set properties and

modify state by calling
methods.

Monday, April 8, 13

NSString

• We want to represent this:

• “I had a delicious sandwich for lunch”

• What other things might we need to do know
about this text?

• What might we need to do to this text?

Monday, April 8, 13

NSString

NSString is a Class that represents strings.

NSString* whatIAte = @”I had a delicious sandwich for
lunch”;

is a shortcut to creating a new string object.

int stringLength = whatIAte.length;

NSString* aBetterLunch = [whatIAte
stringByAppendingString:@” and a macaron”];

Monday, April 8, 13

UIColor

• UIColor is a class that represents a color

• You can create a

Monday, April 8, 13

What’s with the *?

• It simply means “pointer”

• You don’t need to worry about it much

• But you need to make sure you use it whenever
you are talking about that type, but not to that
type

Use *
NSString* someText = @”ss”;

- (NSString*)stringByAppendingString:(NSString*)string

Don’t use *
[NSArray new];

Monday, April 8, 13

Class Methods

• You can talk to a type?

• It’s like asking the blueprint

• [NSString new] is a great example: it returns an
NSString*

• [UIColor redColor] is another, it returns a UIColor*
set to red

• “String, make me a new instance of you”

• There is only ever one of each class

• There can be unlimited objects that are kinds
of that class

Monday, April 8, 13

Writing a Class

• Don’t focus on the values, focus on the types

• Write properties to hold data

• Write methods to do stuff

Monday, April 8, 13

.h and .m files

• Objective-C has both .h files, called header or
interface files, and .m files, called
implementation files.

• Header files are the description of your class to
other classes

• Implementation files are the execution of your
class

Monday, April 8, 13

Brick Class

.h

Define properties

Define methods

.m

Write method code

Monday, April 8, 13

Brick.h

Monday, April 8, 13

Brick.m

Monday, April 8, 13

Tips

• When accessing a property from within the same class,
use self.propertyName

• When accessing a property from another class, use
variableName.propertyName

• When accessing a method from within the same class,
use [self methodName]

• When accessing a method from another class, use
[variableName methodName]

• Classes should start with a capital letter

• Methods and properties should start with a lowercase
letter

Monday, April 8, 13

Create the Restaurant Class

• We’re going to create a new class, called
Restaurant

• We need it to have the following properties:

• The title of the restaurant

• The type of cuisine

• The price of an entree

• The price of an appetizer

• The price of dessert

• The price of a bottle of wine

Assign
ment

Monday, April 8, 13

Create the Restaurant Class

• Don’t worry about methods yet, let’s just get some
properties created.

Monday, April 8, 13

Use the Restaurant class

• In DetailViewController’s configureView method:

• Create a 3 new instances of your Restaurant
class

• Set up properties for your favorite restaurants

• Choose one of those restaurants and make it’s
title display on the view

Assign
ment

Monday, April 8, 13

Tips

• Add #import “Restaurant.h” line to the
top of the DetailViewController.h file

• This lets the DetailViewController know about
the Restaurant

• Make sure you use the * correctly

• Ensure you choose the correct data types (int/
float) or classes (NSString*) for your properties

Monday, April 8, 13

Add a method

• Copy -(float)priceOfDinnerForNumberOfGuests:
(int)numberOfGuests to your Restaurant class

• You can delete that method from your
DetailViewController

• Change the configureView method to call the
method in your restaurant

• Set the detailDescriptionLabel to the output from
your new method

Assign
ment

Monday, April 8, 13

IBOutlets

• IBOutlets are just (special) properties for your
view controllers

• They allow you to make the connection between
the view in the storyboard and your app

• You make the connection to the view, which might
be an instance of UILabel, UIView, UIImageView,
etc.

• Once you have that connection, you can set
whatever properties you want on that view.

Monday, April 8, 13

Adding additional IBOutlets

• Create IBOutlets for labels corresponding to:

• Title

• CuisineType

• (Optional) Add a BOOL to your view called
acceptsCreditCards, and add a credit card logo to
the view, with it’s hidden property set to your
restaurant’s value.

• (Optional) Create additional IBOutlets and
explore how to set other properties on the views.

Assign
ment

Monday, April 8, 13

Turn in

• Ensure you have created 3 restaurants in your
DetailViewController

• Hook up one of them to the view using IBOutlets

• Try switching which of your 3 restaurants is being
displayed.

• Can you set up your code so that switching this
only requires changing 1 line of code?

• Email your zipped assignment to
stanciod@newschool.edu

Monday, April 8, 13

mailto:stanciod@newschool.edu
mailto:stanciod@newschool.edu

Next week:

• IBActions (Special methods that allow you to hook
up buttons and other controls)

• Model-View-Controller

• More User Interface exploration

• Dealing with images

• What do you want to learn about?

Monday, April 8, 13

Advanced Tasks (Optional)

• Add a UIStepper to allow you to change the
number of guests

• Look into IBActions to make this happen

• Add any additional properties and methods to
your Restaurant that support your views

Monday, April 8, 13

